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Abstract Water crises have been among the most serious envi-
ronmental problems worldwide since the twenty-first century. A
water crisis ismarked by a severe shortage ofwater resources and
deteriorating water quality. As an important component of water
resources, lake water quality has deteriorated rapidly in the con-
text of fast urbanization and climate change. This deterioration
has altered the water ecosystem structure and influenced lake
functionality. To curb these trends, various strategies and proce-
dures have been used in many urban lakes. Among these proce-
dures, accurate and responsive water environment monitoring is
the basis of the forecasting and prevention of large-scale
cyanobacteria outbreaks and improvement of water quality. To
dynamicallymonitor and predict the outbreak of cyanobacteria in
Dianchi Lake, in this study, wireless sensors networks (WSNs)
and the geographic information system (GIS) are used tomonitor
water quality at the macro-scale and meso-scale. Historical, real-
time water quality and weather condition data were collected,
and a combination prediction model (adaptive grey model
(AGM) and back propagation artificial neural network

(BPANN)) was proposed. The correlation coefficient (R) of the
simulation experiment reached 0.995. Moreover, we conducted
an empirical experiment in Dianchi Lake, Yunnan, China using
the proposed method. R was 0.93, and the predicting error was
4.77. The results of the experiment suggest that our model has
good performance for water quality prediction and can forecast
cyanobacteria outbreaks. This system provides responsive fore-
warning and data support for lake protection and pollution
control.

Keywords Urbanization . Cyanobacteria .Wireless sensor
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Introduction

With the rapid development of urbanization, continuous expan-
sion of the human footprint, and negative influence of global
warming, environmental problems of inland lakes have become
more serious and complex. For instance, many lakes face eutro-
phication, suffer from both point and non-point pollution, and are
exposed to both endogenous and exogenous pollutions. The de-
terioration of water quality has severely hindered the sustainable
social and economic development of nearby cities (Xin et al.
2014; Xun et al. 2012; Ren et al. 2014).

As the Beyes^ of water protection and management, water
quality monitoring is the basis for forecasting cyanobacteria out-
break and the assessment of bloom intensity. As technology ad-
vances, the monitoring tools and indicators being measured be-
come increasingly diverse, and the measurement accuracy is also
constantly improving (Matthews and Odermatt 2015; Lunetta
et al. 2015). The current methods used to monitor inland
water quality can be divided into two categories, indirect and
direct monitoring. Representative indirect monitoring methods
are based on remote sensing. Remote sensing-based approaches
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covering large study areas, are cost-effective, and have become a
powerful research tool in lake studies. Studies using remote sens-
ing have evolved from traditional water body detection to water
quality monitoring and prediction (Stumpf R P et al. 2016).With
the development of sensors, the types of substances being mon-
itored and the overall accuracy have also increased, such as the
chlorophyll concentration, concentration of suspended solids, to-
tal nitrogen, and total phosphorus (Wu Shengli et al. 2009; Sun
LY et al. 2010; Klemas V 2012; Olmos and Birch 2010).
However, there are still several challenges.

1. The update cycle for remotely sensed imageries is too
long to reflect cyanobacteria outbreak in a timely manner.

2. Reliable image retrieval is subject to weather conditions
(e.g., clouds and rain). The derived water quality indices
are not consistent because of meteorological factors.

3. A large number of research results show that the water
quality parameters (such as chlorophyll a, dissolved oxy-
gen, and turbidity) and meteorological conditions (such as
air temperature, illumination intensity, and wind speed)
are the primary causes of cyanobacteria outbreak (Zou
Zhiqiang et al. 2012; Lunetta et al. 2015; Qin
Boqiang et al. 2014). Although water quality parameters
and distribution can be acquired using remote sensing, the
meteorological conditions around the lake cannot be de-
termined in this way.

With the development of sensor design, wireless communica-
tion, and microelectromechanical systems (MEMS), direct mon-
itoring using wireless sensors networks (WSNs) has become
increasingly popular. Monitoring nodes in WSNs have multiple
features, such as low cost, low power, and self-organization (Zhu
Haiyang et al. 2014; Yu and Naiming 2013; Zhu Yonghong et al.
2015; Yi et al. 2014a, b). These features make wide-area, long-
term, and unattended monitoring possible (Gong Peng 2007).
WSNs, as part of Bearth observation systems^, have attracted
increasing attention. WSNs are important components of the
future development of environmental monitoring around the
world. They have been applied in many areas, such as atmo-
spheric environmental monitoring, soil environmental monitor-
ing, mine environmental monitoring, and geological disaster
monitoring (Evans J et al. 2008; Jin Rui et al. 2012). In the
domain of water quality monitoring, the combination of position
sensors and WSNs enables high-density, high-precision, and
continuous observations. In addition, such methods can simulta-
neously collect both water quality data and surrounding environ-
mental data, which can be used to model the interaction between
the internal and external factors of water pollution and the mech-
anism of the pollution process.

Because of the advantages of sensor networks, this study
uses multi-source heterogeneous water environment sensors
to achieve high-precision and continuous water quality mon-
itoring. Based on the collected data, we used the adaptive grey

model (AGM) and back propagation artificial neural network
(BPANN) to predict the outbreak of cyanobacteria. The study
introduces an innovative approach to monitor water quality
and to predict cyanobacteria outbreak.

Study area

Yunnan Province is located in the southwest part of China (21° to
29°′N, 97° to 106 ′E); the total land mass covers approximately
394,000 km2 and accounts for 4.11% of the country’s land mass.
Dianchi Lake is located in Kunming City, which is the capital
city of Yunnan Province. It is the largest freshwater lake in
Yunnan Province. Because of the environmental and aesthetic
importance, Dianchi Lake is known as the Bpearl of the plateau^.
Figure 1 shows the research area location. Rapid urbanization,
global warming, and other natural and human factors have large-
ly deteriorated the water quality in Dianchi Lake. It has been
exposed to multiple types of pollution, including point and
non-point source pollutions, as well as endogenous and exoge-
nous pollutions. The water quality has changed from Grade II to
worse than Grade V (based on Chinese water quality standards)
in just 50 years. Plagued by severe eutrophication and frequent
outbreaks of cyanobacteria bloom, Dianchi Lake is currently one
of themost polluted lakes in China (Genbao L I et al. 2014; Yong
L et al. 2012).

Themain cause ofwatershed environment deterioration is that
the formation mechanism of urban lake pollution has not been
efficiently addressed. Effective methods for controlling pollution
have not been fully developed. The focus has been on industrial
point pollution and agricultural non-point pollution, ignoring ur-
ban non-point pollution due to rapid urbanization. A full under-
standing of the changes to the natural environment and human
environment is the basis for controlling lake pollution and im-
proving the lake environment. In this study, we discuss the nat-
ural environment and human environment change in the Dianchi
watershed using data from the China Statistical Yearbook and the
Yunnan Province Statistical Yearbook.

Natural environment analysis

The landforms of the research area

Dianchi Lake, an urban lake, is downstream of Kunming City
and is the lowest place in the Dianchi Basin. The basin area
below 2–35° accounts for 87.6% of the total area. The mini-
mum distance between Dianchi Lake and the Dianchi water-
shed boundary is approximately 600 m. Eventually, these fea-
tures will lead to Dianchi Lake being the ultimate receiving
water body of all the basin water containing pollution (Yao Xu
et al. 2010; Guolin and Bin 2008; Yu and Naiming 2013).
Figure 2 shows the slope and the aspect of the Dianchi
watershed.
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Air temperature change analysis

In the past 60 years, the surface air temperature around the world
increased in a linear trend by approximately 0.74 °C (IPCC2007;
Karl TR et al. 2015). Under these circumstances, the amount and
pattern of rainfall has changed. Figure 3a shows the surface air
temperature trend of Kunming during the last 25 years.

The results show that the average surface air temperature
was approximately 15.9 °C during 1990–2014, and the last
10 years rank among the ten warmest years for Kunming since
2005. The overall trend in the average air temperature change
is increasing at a rate of 0.391 °C/10, and the trend is signif-
icant (p < 0.01). The variation tendency of air temperature in
Kunming is consistent with that around the world. In addition,
oscillation in the air temperature trend can be observed. The
temperature oscillates between ±2 °C, but we do not know the
cause and rule.

Relative humidity change analysis

The average relative humidity during 1990–2014 was
68.9%RH inKunming. Figure 3b shows the relative humidity
change trend of Kunming over the last 25 years. The overall
trend in the average relative humidity change is a significant
decrease (p < 0.01). The phenomenon matches the objective

law of atmospheric sciences. Similarly, oscillation in the rela-
tive humidity trend is obvious (±13% RH). The air tempera-
ture and relative humidity change rates are strongly related,
with an obvious lag.

Rainfall change analysis

The average total rainfall during 1990–2014 was approximately
977.4 mm. The overall trend in the total rainfall is a significant
decrease (p < 0.01). Figure 3c shows the analysis results. The
rainfall in the last 10 years was the lowest for Kunming since
1990, impacting the on water supply to Dianchi Lake and
resulting in a longer water renewal cycle. Oscillation in the rain-
fall trend is obvious.

Wind speed change analysis

The average wind speed during 1990–2014 was approximate-
ly 9.43 km/h. Wind speed significantly (p < 0.01) increased
since 1990 (Fig. 3d). Wind plays an important and extensive
role in the lake water quality and cyanobacteria outbreak,
directly affecting the water environment. Figure 3e clearly
illustrates that the southwest wind is dominant nearly all year,
and the city of Kunming is in the east and south area, which

Fig. 1 The research area locations
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has resulted in pollutant accumulation and environment
deterioration.

Human environment change analysis

The urbanization level of Kunming reached large-scale en-
hancement in the strategy context of BOne Belt and One
Road^, BBr idgehead S t r a t egy ,̂ BNew Kunming
Construction of One Lake with Four City ,̂ and BProtecting

Farmland in Flatland Areas and Constructing Mountainous
Cities^ in recent years. These development situations have
increased the intensity of Dianchi Lake pollution. One of the
most important aspect is that the impervious surface area
(ISA) is increasing due to the urbanization process. An in-
crease in ISA leads to soil erosion, the urban heat island effect,
and urban waterlogging (Pham S V et al. 2008; Yuewen Ze
et al. 2006; Anderson J R 1976; Peng Jian et al. 2006; Wu and
Murray 2003; Xiao R B 2011; Voorde T V D et al. 2011).

The slope of Dianchi watershed The aspect of Dianchi watershed
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Fig. 2. The slope and the aspect
of the Dianchi watershed. a The
slope of Dianchi watershed; b the
aspect of Dianchi watershed
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Fig. 3 The natural and human parameters change trend of Dianchi
watershed over the last 25 years (1990–2014). a The surface air
temperature change trend; b relative humidity change trend; c rainfall

change trend; d wind speed change trend; e wind location analysis
result; f the impervious surface area change trend
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ISA change analysis

ISA is an important parameter in the study of the impact
of urbanization on the water environment. In 1994,
Schueler T R (1994) proposed that the impact of ISA on
the water environment can be ignored when ISA less than
10%; the deterioration of the water environment is obvi-
ous when ISA is 10–25%; when ISA is greater than 25%,
the deterioration of the water environment is hard to re-
verse. After analysing the changing trends of the 17 sub-
watersheds of the Dianchi watershed during 1990–2015,
we found that all the sub-watershed ISA values were sig-
nificantly increasing (p < 0.001). Figure 3f shows the
changing trend of the Dianchi watershed during 1990–
2015, and the spatial-temporal distribution of each sub-
watershed ISA is shown in Fig. 4.

The results show that the ISA changing trend was linear
(R2 = 0.93). In 1993, the ISA of the Dianchi watershed
was approximately 3.63, and the impact of ISA on the
water environment could be ignored. In 2009, the ISA of
the Dianchi watershed was approximately 10.57%, indi-
cating that the deterioration of the water environment
was obvious due to the increasing ISA. In 2015, the ISA
of the Dianchi watershed reached 19.44%, and the impact
of ISA on the water environment would be disastrous if
the ISA continued to expand.

Figure 5 shows the changing trend analysis of the 17
sub-watersheds of the Dianchi watershed during 1990–
2015. In 1999, four sub-watersheds had ISA of 10–25%,
and the remaining sub-watershed ISA values were less than
10%. From 1999 to 2009, ten sub-watersheds had ISA of
10–25%, and three sub-watersheds had ISA greater than 25%.
In 2015, the number of sub-watersheds with ISA greater than
25%was ten. In addition, the ISAvalues of the Jinye River sub-
watershed, the Gucheng River sub-watershed, Chuanfangzi
River sub-watershed, and Dongbaisha River were 32.09,
34.41, 36.91, and 40.75%, respectively. The analysis shows that
the urbanization speed of Kunming is extremely fast, and the
effect on the water environment is severe.

House construction area change analysis

House construction areas are the places where people live.
In the last 30 years, Kunming has been in a stage of rapid
development. As a significant characteristic of urbaniza-
tion, increasing house construction area accompanied this
development. The increasing house construction has sub-
jected the lake to increasing environmental pressure,
resulting in decreasing wood land, farmland, and bare
land. Figure 6a shows the Kunming house construction
area change trend during 1993–2014.

There is a significant increasing trend of house con-
struction area (p < 0.01). This changing trend can be

broken into two phases. In the first phase of 1993–2009,
the changing trend was linear (R2 = 0.83); in the second
phase during 2009–2014, Kunming experienced rapid
growth following a linear relationship (R2 = 0.95).

Population change analysis

A fast urbanization process is accompanied by large-scale
migration, resulting in a rapidly increasing city population
and a dramatically declining rural population. Figure 6b
shows the population change analysis during 1990–2014.
The population of Kunming rose to 6.626 million in 2014,
twice the population of 1990. There was a significantly
increasing population trend (p < 0.001). Furthermore,
Kunming is a population inflow city and is the main cen-
tralization area. The eco-carrying capacity of the Dianchi
watershed is being challenged.

It is necessary to perform long-term, dynamic, and real-
time monitoring to provide data and a theoretical basis to
control the Dianchi Lake pollution to protect and control the
ecology of the Dianchi watershed.

Model parameter selection and evaluation criteria

Model parameter selection

The selection of indicators is fundamental to predicting the
trends and areas of outbreak. There are wide ranges of indica-
tors associated with eutrophication. In general, they can be
divided into physical, chemical, and biological. Since out-
breaks of cyanobacteria result from the interaction of a variety
of factors, we cannot predict the degree of eutrophication or
cyanobacteria outbreak based on only one or a few indicators.
However, treating all related indicators as inputs in the model
is not only unrealistic but may result inmodel over-fitting. Too
many input variables slow the convergence rate and generate
substantial noise. Some indicators cannot be measured by in
situ sensors. These indicators can only be measured through
water sample collection and analysis in the laboratory. The
complex process restricts their application in real-time sys-
tems. The water quality of Dianchi Lake is Grade V, the aver-
age chemical oxygen demand (COD) is approximately 58mg/
L, the average total phosphorus (TP) is approximately
0.22 mg/L, the average total nitrogen (TN) is approximately
0.85 mg/L, the average of permanganate index (PI) is approx-
imately 9.8 mg/L and the average trophic status index is ap-
proximately 72 based on the Environment Condition Gazette,
which was published by the Yunnan Province Environment
Monitoring Canter in 2014. According to the Environmental
Quality Standard of Surface Water published by the National
Environmental Protection Bureau, Dianchi Lake is at a high
eutrophication level, and this situation will not change
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quickly. Some of the water quality parameters will remain
within a narrow range (such as COD, TP, TN, and PI).
Because Dianchi Lake is at a high eutrophication level, algal
blooms will occur when the environment parameters (such as
air temperature, rainfall, and Chla) meet the appropriate
conditions.

This paper selects 13 parameters that are highly related to
eutrophication, TN, TP, COD, PI, Chla, dissolved oxygen
(DO), turbidity (TUR), pH, water temperature, light, wind
speed, wind direction, and precipitation, for the model.

We obtained TN, TP, COD, and PI from the data published by
Yunnan Environmental Monitoring Center. Chla, DO, TUR, pH,
and temperature were measured using in situ sensors. Light, wind
speed, wind direction, and precipitation were retrieved frommete-
orological data provided by the Yunnan Meteorological Bureau.

Evaluation criteria for outbreak

Li et al. used the density index of cyanobacteria and classified
outbreaks into five categories (2014). Liu et al. used floating
areas of cyanobacteria in Taihu Lake and divided the bloom
degree into small, medium, large, serious, and catastrophic
(2011). By monitoring the movement patterns of fish in the lake,
Chen et al. selected the curvature and proximity features to eval-
uate water quality (2015). Kong et al. used ten meteorological

and hydrological parameters as evaluation criteria, with Chla
used as an indicator to monitor the degree of bloom (2009).

When a lake is in a eutrophic state, the number of dominant
species grows exponentially. Hence, we can evaluate the de-
gree of eutrophication based on the population of the domi-
nant planktonic algae. The concentration of Chla can be used
to represent the quantity of algae. Analysing and predicting
the change in Chla helps to estimate the biomass status and
trends of lake phytoplankton.

In this paper, we used 13 indicators as model inputs to
predict the Chla concentration in the next 24 to 72 h. This
indicator can be used as a signal for cyanobacteria outbreak.

Algorithm analysis

The lake system is a multi-level, multi-factor, and multi-target
complex system. The change process of the algal blooms reveals
a significant level of complexity. Data generated from this pro-
cess show obvious patterns of randomness, incompleteness, and
uncertainty. Such characteristics suggest that cyanobacteria
bloom prediction is a typical grey system. In addition,
cyanobacteria outbreaks show significant regional differences
due to interactions between external environmental factors and
internal water substances. This feature suggests that outbreak
prediction is a nonlinear problem. Considering these

Fig. 5 The changing trend
analysis of the sub-watersheds of
the Dianchi watershed during
1990–2015
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Fig. 6 House construction uses area and population change during 1990–2014. a house construction uses area change trend; b population change trend
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characteristics, we use an artificial neural network (ANN) in this
study to model the process of cyanobacteria outbreak.

We combined the adaptive grey model and BP ANNs in an
AGM-BPANN model to predict the process of cyanobacteria
outbreak. This model incorporated both environmental factors
(precipitation, wind speed, wind direction) and internal water
environment factors (nitrogen, phosphorus, COD, permanganate,
chlorophyll, DO, pH, temperature).We used themodel to predict
the variation of cyanobacteria blooms on a specific time scale.
Figure 7 shows the workflow of the AGM-BPANN model.

The AGM algorithm

AGM (1, 1) is the core of the grey model and evolves from
GM (1, 1). GM (1, 1) is a first-order differential equation of a
single variable. Its discrete-time response function is exponen-
tial. The modelling process is as follows, assuming that the
sequence of original data can be represented as X(0) = {X(0)(1),
X(0)(2),…, X(0)(n)} and the accumulated sequence can be ob-
tained after accumulating them.

X 1ð Þ tð Þ ¼
Xi

m¼1

X 0ð Þ mð Þ; i ¼ 1; 2;…; t ð1Þ

Therefore, the new sequence can be acquired, X(1) = {X(1)(1),
X(1)(2),…, X(1)(n)}, and the differential equation of the new se-
quence is as follows:

dx 1ð Þ

dt
þ kx 1ð Þ ¼ m ð2Þ

Equation (3) shows the discrete form of Eq. (4).

x 0ð Þ t þ 1ð Þ þ 1

2
k x 1ð Þ t þ 1ð Þ þ x1 tð Þ
h i

¼ m ð3Þ

K stands for the parameter to be identified; m stands for an
endogenous variable. Assume that the estimating parameter is
as follows:

A ¼ k ̂
m̂

� �
¼ XTX
� �−1

XTY
� � ¼

2 1−ek
� �
1þ ek
2A

1þ ea

2
664

3
775

Y ¼
x0 2ð Þ
x0 3ð Þ
……
x0 nð Þ

2
664

3
775

ð4Þ

X ¼

−
1

2
x 1ð Þ 1ð Þ þ x 1ð Þ 2ð Þ
h i

1

−
1

2
x 1ð Þ 2ð Þ þ x 1ð Þ 3ð Þ
h i

1
……

−
1

2
x 1ð Þ n−1ð Þ þ x 1ð Þ nð Þ
h i

1

2
666664

3
777775 ð5Þ

Because X and Y are confirmed parameters, A is an
unknown parameter. The number of equations is n − 1,
so the equation has a solution. A can be calculated using
the least squares method. The cumulative time series of
the GM (1,1) model can be acquired by inserting A into
Eq. (2).

x ̂ 1ð Þ t þ 1ð Þ ¼ x 0ð Þ 1ð Þ− m ̂

k ̂

" #
e−k

̂t þ m̂

k ̂
ð6Þ

x(1)(t + 1) stands for the accumulative prediction value. The
prediction model of the original sequence can be acquired
after subtracting the series.

X ̂
0ð Þ

t þ 1ð Þ ¼ X ̂
1ð Þ

t þ 1ð Þ−X ̂
1ð Þ

tð Þ; t ¼ 1; 2;…; nð Þ ð7Þ
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Fig. 7 The structure of GM-BPANN
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There are two accumulation and restore steps in which
error occurs when the randomness of the raw data is weakened
in the procedure of constructing the model for GM (1,1).
Therefore, GM (1,1) is a biased exponential model. The effort
is uneven in practical application.

We can acquire Eq. (8) by replacing k and m with k̂ and m̂.

k ¼ ln
2−k ̂

2þ k ̂
;A ¼ 2m ̂

2þ k ̂
ð8Þ

Equation (9) shows the new, improved AGM (1,1) model.

x ̂
0ð Þ

t þ 1ð Þ ¼ Ae−kt t ¼ 1; 2;…; n ð9Þ

BPANN algorithm

The BPANN consists of three layers, an input layer, a hidden
layer, and an output layer. Figure 8 shows the network archi-
tecture. The input layer consists of water quality variables.
Based on the network structure, information is passed to the
next layer in certain ways. The hidden layer typically includes
one or more network layers, with each layer containing a
certain number of network nodes.

The most commonly used activation function f(x) (f1) is
shown in Fig. 8a), and is a sigmoid function or hyperbolic
tangent function.

Sigmoid : f xð Þ ¼ 1

1þ e−x
0 < f xð Þ < 1ð Þ ð10Þ

Hyperbolic tangent function : f xð Þ ¼ 1−e−x

1þ e−x
−1 < f xð Þ < 1ð Þ ð11Þ

We usually select a linear function (such as f(x) = ax + b) as
the activation function when the model is used to approximate
the function (f2 is shown in Fig. 8a).

Assuming that Ol stands for the output node, Hn stands for
the hidden node, Im stands for the input node, Wnm stands for
the weight of layer m to layer n, Vln stands for the weight of
layer n to the output layer, β stands for the threshold of node n,
and Eq. (12) stands for each hidden node output.

Hn ¼ f
X

m
WmnIm−βn

� �
ð12Þ

Therefore Ol can be expressed by Eq. (13).

Ol ¼ f
X
m

VlnHn−βn

 !
ð13Þ

The BP ANN learning process is divided into two
phases, forward propagation and backward propagation.
The outputs are generated through forward propagation.
If there is a significant deviation between the actual output
and expected value, the errors are calculated and passed
backward based on the path connections. Based on this
process, the weights and thresholds of the network are
updated to reduce the prediction error. When the error is
reduced to the required value or the number of iterations
reaches a predetermined value, the learning process is
stopped.

Cyanobacteria bloom prediction based on AGM-BPANN

The physical, chemical, and biological factors in the water
body, as well as the interaction between natural and hu-
man factors, jointly influence eutrophication in the lake.
Due to the uncertainty of the lake system, it is difficult to
accurately describe the boundary and structure. The grey
model can use approximate differential equations to de-
scribe future tendencies based on previously known or
inaccurate information. By using time series data to deter-
mine the differential equation parameters, the grey model
performs well in many uncertain systems. There is ran-
domness, uncertainty, and a complex nonlinear relation-
ship between various elements in the lake system. The
ANN is good at transforming incomplete, unreliable and
uncertain information into complete, reliable, and definite
information and is suitable for high-dimensional, nonlin-
ear problems when the mechanism is not clear.

Experimental results and discussion

Design of the system architecture

Because the goals of the system are to obtain, transfer, fuse,
predict, and visualize water quality information, based on previ-
ous theoretical and algorithm preparation (Luo Yi et al. 2015;
LuoYi et al. 2014; LuoYi et al. 2014), this project constructs a 4-
layer architecture, including a monitoring layer, data storage lay-
er, model layer, and application layer (Fig. 9).

The application layer collects real-time water quality informa-
tion from meteorological and environmental monitoring nodes
installed in Dianchi Lake. Managers can query and update the
parameters of the monitoring nodes through the application inter-
face. Similarly, technicians can monitor and maintain the nodes
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through the application interface. Users can obtain information
about the water environment through the application interface.
The interface also provides data visualization functionality based
on GIS procedures. Because the system contains a series of
structured/unstructured and relational/non-relational data, we used
the non-relational database MongoDB to build the data storage
layer to achieve multiple and heterogeneous data management.
Before using the model for prediction, we pre-trained and opti-
mized the model. The model layer was designed to conduct the
training and optimization steps.When using the system, themodel
can be called directly after the training phase is completed.

Design of the monitoring node

Figure 10 shows the hardware design architecture for the mon-
itoring node. It includes environment perception, sensor signal
conversion, data processing, data fusion, and data exchange com-
ponents. The environmental perception component is composed
of a series of water quality sensors and weather sensors to mea-
sure water quality and collect meteorological data.

Figure 11a, b shows a photograph of a Chla sensor and water
quality sensor. The signal conversion component processes the
sensor array electrical signals through amplification, shaping,
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filtering, and A/D conversion and passes the data to the next
layer. The data processing and fusion components use an
LPC1788 as the main chip to conduct data collection, pre-pro-
cessing, and other functions. The data exchange component is
composed of a GPS module and a GPRS module; the former is
used to obtain spatiotemporal information in the study area, while
the latter implements data or command exchange between the
monitoring node and monitoring centre.

Since the monitoring nodes are placed in the lake, the sen-
sors are left unattended for long periods. Hence, we use solar
panels to convert light energy into electrical energy and use
lithium batteries to store the electricity to power the monitor-
ing nodes. The power of a solar panel (Q) and the capacity of a
lithium battery (P) can be calculated using e (14) and (15).

Q ¼ K � Qd � α� D� C ð14Þ

P ¼ 5618� K � Qd

KOP � HLð Þ ð15Þ

K stands for the safety factor, Qd stands for the daily average
power consumption of the monitoring node, α stands for the

temperature correction factor,D stands for the longest successive
number of rainy days, C stands for the discharge capacity coef-
ficient, and HL stands for the average solar radiation in a year.
According to the argument list and historical meteorological data,
the power of a solar panel must be greater than 35 W, and the
capacity of the lithium batteriesmust be greater than 31Ah.After
considering the systemmargin, a 12 V/35 Ah lithium battery and
a 40W solar panel were selected. Figure 11c shows a photograph
of the monitoring system.

Sensor calibration

Chlorophyll a sensor calibration

Figure 12a shows the measurement error distribution for chlo-
rophyll a. Based on sampling principles for selecting the test
point and sample size, we prepared 13 chlorophyll a standard
solutions with different concentrations within the range of the
sensor spectrum. The concentrations were 0, 0.1, 1, 10, 20, 30,
40, 50, 60, 70, 80, 90, and 100 μg/LWe used the chlorophyll a
sensor to measure the concentration of each of the 13 solu-
tions. We also used the monitoring nodes to conduct the mea-
surements. Based on the testing results, the maximum
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TUR sensor
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Fig. 10 The structure of the
monitoring node
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Fig. 11 Photographs of monitoring node. a Photograph of Chla sensor and water quality sensor array; b photograph of Chla sensor; c photograph of
monitoring system
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deviation of the chlorophyll a value was approximately
0.08 μg/L. We used the measured error rate to calibrate the
sensor.

pH sensor calibration

Because the pH sensor uses an electrode method to measure
the pH, we calibrated the sensor before using it for monitoring.
Based on sampling principles for selecting the test point and
sample size, we selected six pH buffer solutions to calibrate
the sensor: pH 4.00, pH 6.86, pH 7.00, pH 9.18, pH 10.01, and
pH 12.46. Figure 12b shows the error distribution. The max-
imum pH measurement error was approximately 0.12, which
was used to calibrate the sensor.

DO sensor calibration

The common practice used to calibrate DO sensors is a two-
point linear correction. We placed the sensor in a 0% DO

solution and recorded the output at the monitoring nodes.
Then, we placed the DO sensor in saturated moist air and
recorded the output value. We calibrated the sensor based on
the observed zero point error and range error.

Analysis of the experimental results

We started the monitoring experiment and continuously col-
lected data since June 2015 at Dianchi Haigeng Park. The
monitored parameters include chlorophyll, DO, pH, ammonia,
and temperature. The data were updated every 6 h. We con-
ducted data pre-processing before importing the data into the
model. We averaged the daily water quality data before using
them in the model. After repeated experiments and model
calibration, and given full consideration of the accuracy of
weather forecast data, we used the proposed AGM-BPANN
model to predict the water quality conditions and outbreak
probability 1 day in the future.
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AGM (1,1)-based prediction

We imported water quality data, including chlorophyll, DO, pH,
ammonia nitrogen, PI, and temperature, into the AGM model.
Figure 13 shows the results of the predicted values compared
with the measured values. The red curve represents the measured
values, while the white curve represents the predicted values.

We used the coefficient of determination (R) to evaluate the
model performance. R ≤ 0.6 indicates bad forecasting ability;
0.7 ≤ R < 0.8 indicates moderate forecasting ability;
0.8 ≤ R < 0.9 indicates good forecasting ability; and R ≥ 0.9
indicates excellent forecasting ability. R and the error of the
parameters were RChla = 0.86, δChla = 9.74, RDO = 0.81,
δDO = 1.15, RPH = 0.88,δPH = 0.26, RA-N = 0.88, δA-N = 0.40,
RCODMn = 0.86, δCODMn = 0.19, RT = 0.84, and δT = 2.03. The
experiment results show that the water quality prediction per-
formance of the model is satisfactory.

Chlorophyll a concentration forecast based on BPNN
analysis

Chlorophyll a (Chla) is a comprehensive indicator of phytoplank-
ton biomass and is one of the most important indicators of the
degree of eutrophication. A change in the Chla value results from

the combined effects of multiple factors. In addition, the Chla is
transitive, i.e., the Chla concentration is temporally correlated.
Hence, we used DO, pH, ammonia nitrogen, PI, water tempera-
ture, Chla, TN, TP, COD, CODMn, wind speed, wind direction,
and precipitation as model inputs. The Chla value is used as the
BPANNmodel output. From 4.4.1, we know that the AGM (1,1)
model can accurately predict the water quality indicators 1 day in
the future. Hence, we used the outputs from AGM (1,1) to train
and validate the BPANN model. We trained the network 1000
times and found the model convergence. In addition, based on
Mirchadani theory, we used three hidden layers (each layer
contained 8 nodes). The training accuracy reached 10−2.We used
the sim function to test the network performance. R reached
0.995, which indicates that the model has good modelling per-
formance. We also used the measured water quality data to val-
idate the network and used the residuals to evaluate the learning
performance. Because there was a serious outbreak of
cyanobacteria between July 6 and July 9 near Dianchi Lake
Park, we used the dataset between June 24, 2015 and July 23,
2015 to validate themodel. Figure 14a shows themonitoring site.
Figure 14b shows the map of the cyanobacteria outbreak.

Figure 15 shows the measured and predicted curves for the
Chla concentration at one site. Based on the computation re-
sults, RChla = 0.93 and δChla = 4.77.

Conclusion

In recent years, the rapid development of urbanization and
climate change have contributed to the deterioration of the
ecological environment of Dianchi Lake. Therefore, it is nec-
essary to conduct long-term, dynamic, and real-time monitor-
ing of the water quality. Hence, this study used a wireless
sensor network and GIS techniques to monitor the water qual-
ity in Dianchi Lake. Based on real-time data, forecast data,
and the historical data, this study proposed that the AGM-
BPANN model is to predict the water quality and concentra-
tion of Chla. The AGM-BPANN model could explain the

Fig. 14 Field experiment and map of the cyanobacteria bloom. a
Photograph of the monitoring site; b map of the cyanobacteria outbreak
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process of eutrophication and simulate the nonlinear trend.
The successful prediction of the Chla concentration provides
a scientific basis for early-warning of the cyanobacteria out-
breaks. In future work, we will increase the number of mon-
itoring sites in Dianchi Lake and conduct continuous and
long-term monitoring. The results of the spatiotemporal
modelling will be discussed in future papers.
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